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On the menu...
• Today
‣ Overview of Stochastic Gene Expression (Examples from the Literature)

‣ Stochastic Chemical Kinetics

‣ Solutions for Simple Stochastic Processes (Transcription)

‣ Importance of Population Size

‣ Break??

‣ Moment Computations for Linear Propensities

‣ Linear Noise Approximation

• Thursday (8:40-10:25)
‣ Monte Carlo Simulation Techniques

✴Gillespie (SSA), Tau leaping, Chemical Langevin (SDEs), Slow Scale SSA. 
‣ Density Computations with Finite State Projection Techniques

‣ Switch and Trajectory Analyses

‣ Examples



• Friday, July 24--Nikolai Sinitsyn
‣ Methods of generating functional in stochastic kinetics: enzymatic 

reactions and molecular motors
• Monday, July 27--Ilya Nemenman
‣ Signal processing in biochemical networks: Fourier transforms, central 

limit theorem, linear feedback, and all that, Part I 
• Tuesday, July 28--Anton Zilman
‣ Stochastic view of transport through biological channels

• Wednesday, July 29--Ilya Nemenman
‣ Signal processing in biochemical networks: Information theory, noise 

suppression, form and function, and all that. Part II 
• Thursday, July 30--William Ryu
‣ Bacterial chemo- and thermo-taxis as examples of stochastic signal 

processing systems
• Tuesday, August 4--William Ryu
‣ Bacterial chemo- and thermo-taxis as examples of stochastic signal 

processing systems 

On the menu...
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Slides will be made available 
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Stochastic Gene Expression: An Overview



Why Are Stochastic Models Needed?

• Much of the mathematical modeling of gene networks represents gene 
expression deterministically

• Why worry about stochastic models?

‣ Randomness

‣ Quantization

‣ Low copy number

•  Experimental evidence indicates that stochastic fluctuations are present 

• There are many examples when deterministic models are not adequate



The Central Dogma of Molecular Biology:
Modeling Gene Expression

Deterministic model

• Probability a single mRNA is transcribed in
time dt is krdt.

• Probability a single mRNA is degraded in
time dt is (#mRNA) · γrdt

Stochastic model
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★ Deterministic steady-state equals stochastic mean 
★ Coefficient of variation goes as 1/
★ When mean is large, the coefficient of variation is (relatively) small

√

mean

Cv = coefficient of variation =
standard deviation

mean

Fluctuations at Small Copy Numbers

(mRNA)

(protein)
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Intrinsic Variability in Gene Expression

• Noise propagates through the 
network

• Its amount depends on
‣ # of molecules
‣ stoichiometry
‣ regulation 
‣ ...

• Sometimes it is suppressed; 
other times it is exploited

• Deterministic models are not 
adequate

...

Source of variability at 
cellular level….

•  Small # of molecules 
•  Random events

 

“Intrinsic noise”

Impact of variability



Stochastic Influences on Phenotype

Fingerprints of identical twins
Cc, the first cloned cat and her 

genetic mother, Rainbow

J. Raser and E. O’Shea,  “Noise in Gene Expression: Origins, Consequences, and Control”, Science, 2005  



We Are Starting to See the “Noise”!

• Variability is present and can be measured

Elowitz et al, “Stochastic Gene Expression in a Single Cell”, Science 2002

• Inserted two reporter genes on the chromosome (cfp, yfp)
• Each was controlled by the same promoter
• Expression of cfp shown in green, yfp in red

Low Intrinsic Noise

High Intrinsic Noise



Deterministic Model Fails to Capture Mean

•  Stochastic mean value different from deterministic steady state
•  Noise enhances signal! 

Johan Paulsson , Otto G. Berg , and Måns Ehrenberg, “Stochastic Focusing: Fluctuation-
enhansed sensitivity of intracellular regulation” PNAS 2000

stochastic

deterministic
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Noise Induced Oscillations

Circadian rhythm

Vilar, Kueh, Barkai, Leibler, PNAS 2002

• Oscillations disappear from deterministic model after a small reduction in deg. of repressor
• (Coherence resonance) Regularity of noise induced oscillations can be manipulated 
   by tuning the level of noise [El-Samad, Khammash]



The Pap Pili Stochastic Switch

• Pili enable uropathogenic E. coli to attach to epithelial cell receptors

‣ Plays an essential role in the pathogenesis of urinary tract infections

• E. coli expresses two states ON (piliated) or OFF (unpiliated)  

• Piliation is controlled by a stochastic switch that involves random 
molecular events
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CC DCThe Importance of Stochasticity.
Stochastic Switching: Identical genotypes and identical 
environments can produce different phenotypes.

Same genetic code.
Same chemical environment.

Highly infectious 
phenotype.

Harmless 
phenotype.

Random reactions can lead 
to vastly different results!
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★ What will happen?
★ How frequently?     
★  Why does it happen?
★ Under what conditions?

★ What advantages does 
it provide?

★ How can we prevent it?
★ How can we cause it?

For these systems, we need 
analytical models to answer:
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The Importance of Stochasticity.
Stochastic Switching: Identical genotypes and identical 
environments can produce different phenotypes.



Markov Chain Description for Dynamical Processes



γ

k

N

Degradation: Probability a single mRNA
is degraded in time dt is nγdt

RNA Copy Number as a Random Variable

φ

DNA

mRNA
mRNA copy number N(t) is a random variable

Transcription: Probability a single mRNA
is transcribed in time dt is krdt

n− 10 1 2 n n + 1.....

k k k k

(n + 1)γnγγ

.....

k k

(n− 1)γ2γ 3γ



n− 10 1 2 n n + 1.

k k k k

(n + 1)γnγγ

.

k k

(n− 1)γ2γ 3γ

Find p(n, t), the probability that N(t) = n.

P (n, t + dt) = P (n− 1, t) · kdt

+ P (n + 1, t) · (n + 1)γdt

+ P (n, t) · (1− kdt)(1− nγdt)

Prob.{N(t) = n− 1 and mRNA created in [t,t+dt)}

Prob.{N(t) = n + 1 and mRNA degraded in [t,t+dt)}

Prob.{N(t) = n and
mRNA not created nor degraded in [t,t+dt)}

P (n, t + dt)− P (n, t) = P (n− 1, t)kdt + P (n + 1, t)(n + 1)γdt− P (n, t)(k + nγ)dt

+O(dt2)

Dividing by dt and taking the limit as dt→ 0

d

dt
P (n, t) = kP (n− 1, t) + (n + 1)γP (n + 1, t)− (k + nγ)P (n, t)

The Chemical Master Equation

Key Question:



We look for the stationary distribution

From the Master Equation ...

n = 0 kp(0) = γp(1)

...

mRNA Stationary Distribution

P (n, t) = p(n) ∀t

(k + nγ)p(n) = kp(n− 1) + (n + 1)γp(n + 1)

The stationary solution satisfies: d
dtP (n, t) = 0

kp(1) = 2γp(2)

n = 2 kp(2) = 3γp(3)

n = 1

kp(n− 1) = nγ p(n)



p(n) =
k

γ

1

n
p(n− 1)

=

(
k

γ

)2 1

n

1

n− 2
p(n− 2)

...

=

(
k

γ

)n 1

n!
p(0)

kp(n− 1) = nγ p(n) We can express p(n) as a function of p(0):

p(n) = e−aan

n!

We can solve for p(0) using the fact
∞∑

n=0
p(n) = 1

⇒

Poisson Distribution

1 =
∞∑

n=0

(
k

γ

)n 1

n!
p(0)

= ek/γ p(0) p(0) = e−k/γ

a =
k

γ

-1



We can compute the mean and variance of the Poisson RV N̄ with
density p(n) = e−aan

n! :

µ = E[N̄ ] =
∞∑

n=0
np(n) = e−a

∞∑

n=0
n

an

n!
= a

The second moment

E[N̄2] =
∞∑

n=0
n2p(n) = a2 + a

Therefore,

σ2 = E[N̄2]− E[N̄ ]2 = a

mean = variance = a

The coefficient of variation Cv = σ/µ is

Cv =
1
√

a
=

1
√

µ



a=500
a=50
a=5



Stochastic Chemical Kinetics



Formulation of Stochastic Chemical Kinetics
Gillespie, Physical A, 1992

Reaction volume=Ω

Key Assumptions

(Well-Mixed) The probability of finding any molecule in a region dΩ is
given by dΩ

Ω .

(Thermal Equilibrium) The molecules move due to the thermal energy.
The reaction volume is at a constant temperature T . The velocity of a
molecule is determined according to a Boltzman distribution:

fvx(v) = fvy(v) = fvz(v) =

√
m

2πkBT
e
− m

2kBT v2



vA

vB

vBA

A

B

Probability of Collision: Two Specific Molecules

Given:

• Two spheres A and B with velocities vA and vB, and radii rA and
rB.

• The probability that the center of either sphere lies in a volume dΩ
is given by dΩ

Ω .

What is the probability that A and B will collide in the time [t, t + dt]?



dΩ

rA + rB

Equivalently . . .

‖vBA‖dt

‖vBA‖dt

Collision takes place if the center of A

lies in the region dΩ′.

dΩ′

In the time [t, t + dt] molecule A sweeps
a volume of dΩ = πr2B ‖vBA‖ dt

Collision takes place if any part of A

lies in the region dΩ.

During [t, t + dt] a molecule with radius rA + rB

sweeps a volume of dΩ′ = π(rA + rB)2 ‖vBA‖ dt

The probability of A and B colliding during [t, t + dt] is

1

Ω
π(rA + rB)2‖vBA‖ dt



mean relative speed

Note:

• The probability of A and B colliding was computed for a given a
relative velocity of vBA (conditional probability)

• The relative velocity is a random variable, and we must average over
all velocities.

If we denote by fBA(·) the probability density of the random variable
VBA we have

Collision Probability in [t,t+dt]

=
∫

R3
P (collision in [t, t + dt] | VBA = v) fBA(v)dv

=
∫

R3

1

Ω
π(rA + rB)2‖v‖dt fBA(v)dv

=
1

Ω
π(rA + rB)2dt

∫

R3
‖v‖fBA(v)dv



The probability density function of fBA(·) can be easily computed from
the Boltzman distribution of the velocity and the independence of Vx,
Vy, and Vz.

fBA(v) =

(
m̂

2πkBT

)3/2

e
− m̂

2kBT ‖v‖
2
, where m̂ =

mA + mB

2

Hence

Mean relative speed =
∫

R3
‖v‖fBA(v)dv

=
∫

R3
‖v‖

(
m̂

2πkBT

)3/2

e
− m̂

2kBT ‖v‖
2
dv

=

√
8kBT

πm̂

Probability of A-B collision within [t,t+dt]:

1

Ω
π(rA + rB)2dt

√
8kBT

πm̂



Not all collisions lead to reactions. One can factor in the ”reaction
energy”.

Assumption: An A − B collision leads to a reaction only if the kinetic
energy associated with the component of the velocity along the line of
contact is greater than a critical energy ε.

vBA

v̄BA

Reaction if 1
2m̂v̄2

BA > ε

It can be shown that:

Probability (A-B reaction | A-B collision) = e
− ε

kBT

Probability of A-B reaction within [t,t+dt]:

1

Ω
π(rA + rB)2

√
8kBT

πm̂
e
− ε

kBT dt



Given N species: S1, . . . ,SN with populations x1, . . . , xN at time t.

Consider the bimolecular reaction channel (with distinct species):

R : Si + Sj → products

The number of distinct Si−Sj pairs that can react is: xi · xj. Therefore,

Probability of an R reaction within [t,t+dt]:

xixj
1

Ω
π(ri + rj)

2

√
8kBT

πm̂
e
− ε

kBT dt = w(x)

w(·) is called the propensity function.

Consider the bimolecular reaction channel (with same species):

R′ : Si + Si → products

The number of distinct Si−Si pairs that can react is: xi(xi−1)
2 . Therefore,

Probability of an R′ reaction within [t,t+dt]:

xi(xi − 1)

2

1

Ω
πr2i

√
8kBT

πm̂
e
− ε

kBT dt = w(x) dt



c
φ→ Products

Si + Sj → Products

Si + Si → Products

Si → Products

1

Ω
π(ri + rj)

2

√
8kBT

πm̂
e
− ε

kBT

1

Ω
πr2i

√
8kBT

πm̂
e
− ε

kBT

w(x) c

c ·
xi(xi − 1)

2

c · xi

c

c · xixj

Reaction Propensity Rate

c

c

c

For a monomolecular reaction: c is numerically equal to the reaction
rate constant k of conventional deterministic chemical kinetics

For a bimolecular reaction: c is numerically equal to k/Ω, where k is the
reaction rate constant of conventional deterministic chemical kinetics

Reactions and Propensity Functions

4



• At any time, the state of the system is defined by its integer 
population vector:

• Reactions are transitions from one state to another:

A Jump-Markov description of 
chemical kinetics

[10, 15]

# species 1 # species 2

[11, 15]

[11, 14] [12, 14]

x ∈ Z
N

34



• At any time, the state of the system is defined by its integer 
population vector:

• Reactions are transitions from one state to another:

• These reactions are random, others could have occurred:

A Jump-Markov description of 
chemical kinetics

[10, 15] [11, 15]

[11, 14] [12, 14]

[12, 15][9, 15]

[10, 14][9, 14]

x ∈ Z
N

35



A Jump-Markov description of 
chemical kinetics

[10, 15] [11, 15]

[11, 14] [12, 14]

[12, 15][9, 15]

[10, 14][9, 14]

[11, 16] [12, 16][10, 16][9, 16]

[8, 15]

[8, 14]

[8, 16]

Or others...
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A Jump-Markov description of 
chemical kinetics

[10, 15] [11, 15]

[11, 14] [12, 14]

[12, 15][9, 15]

[10, 14][9, 14]

[11, 16] [12, 16][10, 16][9, 16]

[8, 15]

[8, 14]

[8, 16]

[7, 15]

[7, 14]

[7, 16]

[13, 15]

[13, 14]

[13, 16]

[14, 15]

[14, 14]

[14, 16]

[11, 17] [12, 17][10, 17][9, 17][8, 16][7, 17] [13, 17] [14, 17]

[11, 13] [12, 13][10, 13][9, 13][8, 13][7, 13] [13, 13] [14, 13]

Or others...
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A Jump-Markov description of 
chemical kinetics

Or others...
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A Jump-Markov description of 
chemical kinetics

Or others...
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Reaction Stoichiometry (review)

• The Stoichiometric vector, s, refers to the relative change in the 
population vector after a reaction.

• There may be many different reactions for a given stoichiometry.

40

[10, 15] [11, 15]

[11, 14] [12, 14]

[12, 15][9, 15]

[10, 14][9, 14]

S1 → S1 + S1

S2 → S2 + S1

∅ → S1

s1 = [1, 0]T

S1 + S1 → S1

S1 + S2 → S2

S1 → ∅

s2 = [−1, 0]T

S2 → S2 + S2

S1 → S1 + S2

∅ → S2

s3 = [0, 1]T

S2 → S1

S1 + S2 → S1 + S1

S2 + S2 → S1 + S2

s4 = [1,−1]T



Reaction Propensities (review)

• The propensity,    , of a reaction is its rate.
•          is the probability that the      reaction will occur in a 

time step of length    .
• Typically, propensities depend only upon reactant populations. 

41

[10, 15] [11, 15]

[11, 14] [12, 14]

[12, 15][9, 15]

[10, 14][9, 14]

w

wµdt µ
th

dt

S1 + S1 → S1

S1 + S2 → S2

S1 → ∅

s2 = [−1, 0]T

k1x2(x1 − 1)/2
k2x1x2

k3x1

w2(x1, x2)



p(x, t + dt)− p(x, t) = −p(x, t)
∑

k

wk (x)dt +
∑

k

p(x− sk , t)wk (x)dt +O(dt2)

Rk fires once
Rk reaction
away from x

at x No reaction fires

more than one
reaction in dt

The Chemical Master Equation 

p(x, t + dt) = p(x, t)



1−
∑

k

wk(x)dt +O(dt2)





+
∑

k

p(x− sk, t)




∑

k

wk(x)dt +O(dt2)



 +O(dt2)

Prob. that no reactions fire in [t, t + dt] = 1−∑
k wk(x)dt +O(dt2)

Prob. that reaction Rk fires once in [t, t + dt] = wk(x)dt +O(dt2)
Prob. that more than one reaction fires in [t, t + dt] =O(dt2)

The Chemical Master Equation

dp(x, t)

dt
= −p(x, t)

∑

k

wk(x) +
∑

k

p(x− sk, t)wk(x)



dΦA

dt
= −k1ΦAΦB − k2ΦA

dΦA

dt
= −k1ΦAΦB + k2ΦA

dΦA

dt
= k1ΦAΦB

Example:

k1

k2

or

Relationship of Stochastic and 
Deterministic Descriptions

A + B −→ C

A −→ B

dΦ

dt
= Sf(Φ) where

S =




−1 −1
−1 1
1 0



 , f(Φ) =

[
k1ΦAΦB

k2ΦA

]B

C

Given N species S1, . . . ,SN and M elementary reactions. Let Φi := [Si].

A deterministic description can be obtained from mass-action kinetics:

dΦ

dt
= Sf(Φ)

where f(·) is at most a second order monomial. It depends on the type
of reactions and their rates.



Define XΩ(t) = X(t)
Ω .

Question: How does XΩ(t) relate to Φ(t)?

Fact: Let Φ(t) be the deterministic solution to the reaction rate equa-
tions

dΦ

dt
= Sf(Φ), Φ(0) = Φ0.

Let XΩ(t) be the stochastic representation of the same chemical sys-
tems with XΩ(0) = Φ0. Then for every t ≥ 0:

lim
t→∞

sup
s≤t

∣∣∣XΩ(s)−Φ(s)
∣∣∣ = 0 a.s.

Ω

Relationship of Stochastic and 
Deterministic Descriptions



φ, or XΩ = X/Ω

k(x)

γ0x

0 20 40 60 80 1000

20

40

60

80

100

0 10 20 30 40 500

50

100
Ω =1

Ω = 10

0 10 20 30 40 500

50

100
Ω =3

0 10 20 30 40 500

50

100φ
,

or
X

Ω
=

X
/Ω

time(s)

w1(X) = Ωγ0X/Ω = γ0X

w2(X) = Ω
(

20 + 40
(X/Ω)10

4010 + (X/Ω)10

)

Stochastic 

w1(φ) = γ0x

w1(φ) =
(

20 + 40
φ10

4010 + φ10

)

Deterministic 
2



Moment Computations

• Affine Propensity 
• Linear Noise Approximation



Moment Computations

For the first moment E[Xi], multiply the CME by xi

and sum over all (x1, . . . , xN) ∈ NN

For the second moment E[XiXj], multiply the CME by xixj

and sum over all (x1, . . . , xN) ∈ NN

Let w(x) = [w1(x), . . . , wM(x)]T

In matrix notation:

dE[X]

dt
= SE[w(X)]

dE[XXT ]

dt
= SE[w(X)XT ] + E[w(X)XT ]TST + S{diagE[w(X)]}ST



These are linear ordinary differential equations and can be easily solved!

Affine Propensity

Suppose the propensity function is affine:

w(x) = Wx + w0, (W is N ×N , w0 is N × 1)

Then E[w(X)] = WE[X]+w0, and E[w(X)XT ] = WE[XXT ]+w0E[XT ].

This gives us the moment equations:

d

dt
E[X] = SWE[X] + Sw0 First Moment

d

dt
E[XXT ] = SWE[XXT ] + E[XXT ]WTST + S diag(WE[X] + w0)S

T

+ Sw0E[XT ] + E[X]wT
0ST Second Moment



Affine Propensity (cont.)

Define the covariance matrix Σ = E[(X − E[X])(X − E(X)]T ].
We can also compute covariance equations:

d

dt
Σ = SWΣ + ΣWTST + S diag(WE[X] + w0)S

T

Steady-state Case
The steady-state moments and covariances can be obtained by solving
linear algebraic equations:

Let X̄ = lim
t→∞

E[X(t)] and Σ̄ = lim
t→∞

Σ(t).

Then

SWX̄ = −Sw0

SW Σ̄ + Σ̄WTST + S diag(WX̄ + w0)S
T = 0



Fluctuations Arise from Noise Driven Dynamics 

Define A = SW , and B = S
√

diag(WX̄ + w0).
The steady-state covariances equation

SW Σ̄ + Σ̄WTST + S diag(WX̄ + w0)S
T = 0

becomes

AΣ̄ + Σ̄AT + BBT = 0 Lyapunov Equation

The Lyapunov equation characterizes the steady-state covariance of a
output of the linear dynamical system

ẏ = Ay + Bω

where ω is a unit intensity white Gaussian noise!

More precisely, the solution of the vector SDE:

dy = Ay dt + B dWt

where Wt is Brownian motion. This is also called Ornstein-Uhlenbeck

process.



Moment Computations

• Affine Propensity 
• Linear Noise Approximation



where dV (t) = A(t)V (t)dt + B(t)dWt

Write XΩ = Φ0(t) + 1√
Ω

V Ω where Φ0(t) solves the deterministic RRE

dΦ

dt
= Sf(Φ)

Linear Noise Approximation: XΩ(t) ≈ Φ(t) + 1√
Ω

V (t)

Linear Noise Approximation (LNA)

Let XΩ(t) := X(t)
Ω

Linear Noise Approximation

V Ω(t)→ V (t) as Ω→∞,

A(t) =
d[Sf(Φ)]

dΦ
(Φ0(t)), B(t) := S

√
diag[f(Φ0(t))]



Let Σ̄ be the covariance matrix of
√

Ω · V (t). Then

d

dt
Σ̄(t) = A(t)Σ̄(t) + Σ̄(t)AT (t) + ΩB(t)B(t)T

X(t) ≈ ΩΦ̄ +
√

ΩV (t)

Multiplying XΩ(t) ≈ Φ̄ + 1√
Ω

V (t) by Ω, we get

zero mean
stochastic

deterministic
concentration

population

E[X(t)] = ΩΦ̄

A(t) =
d[Sf(Φ)]

dΦ
(Φ0(t)), B(t) := S

√
diag[f(Φ0(t))]

A = SW B = S
√

diag(WX̄ + w0)

At stationary distribution, we have the same Lyapunov 
equation as in the affine linear case:



Application to Gene Expression



X1(t) is # of mRNA; X2(t) is # of protein

W w0

γp

kr

kp

γr

φ

φ

DNA

mRNA

protein

Application to Gene Expression
Reactants

R1 : φ −→ mRNA

R2 : mRNA −→ φ

R3 : mRNA −→ protein + mRNA

R4 : protein −→ φ

Reactions

S =

[
1 −1 0 0
0 0 1 −1

]

w(X) =





kr

γrX1

kpX1

γpX2




=





0 0
γr 0
kp 0
0 γp





[
X1

X2

]

+





kr

0
0
0





Stoichiometry and Propensity

kr

γr

kp

γp



A = SW =

[
−γr 0
kp −γp

]

, Sw0 =

[
kr

0

]
Steady-State Moments

Steady-State Covariance

X̄ = −A−1Sw0 =





kr
γr

kpkr
γpγr





Σ̄ =





kr
γr

kpkr
γr(γr+γp)

kpkr
γr(γr+γp)

kpkr
γpγr

(1 + kp
γr+γp

)





BBT = S diag(WX̄ + w0)ST =




2kr 0

0 2kpkr
γr





The steady-state covariances equation

AΣ̄ + Σ̄AT + BBT = 0 Lyapunov Equation

can be solved algebraically for Σ̄.



Coefficients of Variation

C2
vr =

1
kr
γr

=
1

X̄1

C2
vp =

1
krkp
γrγp

(

1 +
kp

γr + γp

)

=
1

X̄2

(

1 +
kp

γr + γp

)

Large mean does not imply small fluctuations!

Question: Does a large X̄2 imply a small Cvp?

C2
vp =

1
krkp
γrγp

(

1 +
kp

γr + γp

)

≥
1

krkp
γrγp

(
kp

γr + γp

)

=
γrγp

kr
·

1

γr + γp

X̄2 = krkp
γrγp

, which can be chosen independently from Cvp.
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Noise Suppression and Exploitation



X1(t) is # of mRNA; X2(t) is # of protein

W w0

Noise Attenuation through Negative Feedback
Reactants

R2 : mRNA −→ φ

R3 : mRNA −→ protein + mRNA

R4 : protein −→ φ

Reactions

S =

[
1 −1 0 0
0 0 1 −1

]
Stoichiometry and Propensity

kr

γr

kp

γp

k0 − k1 · (# protein)

γp

kp

γr

φ

φ

DNA

mRNA

protein

kr = k0 − k1 · (# protein)

w(X) =





k0 − k1X2

γrX1

kpX1

γpX2




=





0 −k1

γr 0
kp 0
0 γp





[
X1

X2

]

+





k0

0
0
0





R1 : φ −→ mRNA



BBT = S diag(WX̄ + w0)ST =

[
k0 + γrµr − k1µp 0

0 kpµr + γpµp

]

The steady-state covariances equation

AΣ̄ + Σ̄AT + BBT = 0 Lyapunov Equation

can be solved algebraically for Σ̄.

Steady-State Moments

Steady-State Covariance

A = SW =

[
−γr −k1

kp −γp

]

, Sw0 =

[
k0

0

]

X̄ = −A−1Sw0 =





k0
γr

1+
k1kp
γpγr

k0kp
γrγp

1+
k1kp
γpγr





=:

[
µr

µp

]

Σ̄22 = σ2
p =

[
1− φ

1 + bφ
·

b

1 + η
+ 1

]

µp where φ =
k1

γp
, b =

kp

γr
, η =

γp

γr



Feedback vs. No Feedback

γp

kr

kp

γr

φ

φ

DNA

mRNA

protein

k0 − k1 · (# protein)

γp

kp

γr

φ

φ

DNA

mRNA

protein

Mean

Variance

µ∗
p µ∗

p

[
1− φ

1 + bφ
·

b

1 + η
+ 1

]

µ∗p where φ =
k1

γp

[
b

1 + η
+ 1

]

µ∗
p

Protein variance is always smaller with negative feedback!

< 1

In order to compare the noise in the two cases, we must ensure that
both configuations have the same mean!

Impose the constraint: µFB
p = µNFB

p =: µ∗
p

This may be achieved by choosing k0 = kr + k1µNFB
p .

no feedback feedback
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Exploiting the Noise: 
Failure of the linear noise approximation

•  Noise enhances signal! 
Johan Paulsson , Otto G. Berg , and Måns Ehrenberg, PNAS 2000

stochastic

deterministic
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From Jensen’s Inequality:
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Stochastic Gene Expression in Systems Biology 
(Part 2)

Brian Munsky
Center for Non-Linear Studies, Los Alamos National Lab



On the menu...
• Yesterday

Overview of Stochastic Gene Expression

Stochastic Chemical Kinetics

Solutions for Simple Stochastic Processes (Transcription)

Importance of Population Size

Moment Computations for Linear Propensities

Linear Noise Approximation

• Today

‣ Monte Carlo Simulation Techniques

✴Gillespie (SSA), Tau leaping, Chemical Langevin (SDEs), Slow Scale SSA. 
‣ Density Computations with Finite State Projection Techniques

‣ Switch and Trajectory Analyses



Define XΩ(t) = X(t)
Ω .

Question: How does XΩ(t) relate to Φ(t)?

Fact: Let Φ(t) be the deterministic solution to the reaction rate equa-
tions

dΦ

dt
= Sf(Φ), Φ(0) = Φ0.

Let XΩ(t) be the stochastic representation of the same chemical sys-
tems with XΩ(0) = Φ0. Then for every t ≥ 0:

lim
t→∞

sup
s≤t

∣∣∣XΩ(s)−Φ(s)
∣∣∣ = 0 a.s.

Ω

Relationship of Stochastic and 
Deterministic Descriptions
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Monte Carlo Methods



Brian Munsky 
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CC DCKinetic Monte-Carlo 
Simulation Methods

• Stochastic Simulation Algorithm 
•D.T. Gillespie, J. Phys. Chem. A 81, 2340 (1977)

•M. Gibson and J. Bruck, J. Phys. Chem. 104, 1876 (2000)

• τ leaping
•D. Gillespie, J. Chem. Phys. 115, 1716 (2001); 119, 8229 (2003)
•M. Rathinam et al., J. Chem. Phys. 119, 12784 (2003)
•T. Tian and K. Burrage, J. Chem. Phys. 121, 10356 (2004)

•A. Chatterjee, et al.  J. Chem. Phys. 122, 054104 (2005) 
•Y. Cao, D. Gillespie and L. Petzold, J. Chem. Phys. 123, 054104 (2005)

• Chemical Langevin Equations
•D. Gillespie, J. Chem. Phys. 113, 1716 (2000)

• System Partitioning Methods
•C. Rao and A. Arkin, J. Chem. Phys. 118, 4999 (2003)

•Y. Cao et al., J. Chem. Phys. 122, 014116 (2005)

• Hybrid Methods
•E. Haseltine and J. Rawlings, J. Chem. Phys. 117, 6959 (2002)
•H. Salis and Y. Kaznessis, J. Chem. Phys. 122, 054103 (2005)
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• At any time, the state of the system is defined by its integer 
population vector:

• Reactions are transitions from one state to another:

A Jump-Markov description of 
chemical kinetics

[10, 15]

# species 1 # species 2

[11, 15]

[11, 14] [12, 14]

x ∈ Z
N
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• At any time, the state of the system is defined by its integer 
population vector:

• Reactions are transitions from one state to another:

• These reactions are random, others could have occurred:

A Jump-Markov description of 
chemical kinetics

[10, 15] [11, 15]

[11, 14] [12, 14]

[12, 15][9, 15]

[10, 14][9, 14]

x ∈ Z
N
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A Jump-Markov description of 
chemical kinetics

[10, 15] [11, 15]

[11, 14] [12, 14]

[12, 15][9, 15]

[10, 14][9, 14]

[11, 16] [12, 16][10, 16][9, 16]

[8, 15]

[8, 14]

[8, 16]

Or others...
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A Jump-Markov description of 
chemical kinetics

[10, 15] [11, 15]

[11, 14] [12, 14]

[12, 15][9, 15]

[10, 14][9, 14]

[11, 16] [12, 16][10, 16][9, 16]

[8, 15]

[8, 14]

[8, 16]

[7, 15]

[7, 14]

[7, 16]

[13, 15]

[13, 14]

[13, 16]

[14, 15]

[14, 14]

[14, 16]

[11, 17] [12, 17][10, 17][9, 17][8, 16][7, 17] [13, 17] [14, 17]

[11, 13] [12, 13][10, 13][9, 13][8, 13][7, 13] [13, 13] [14, 13]

Or others...
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A Jump-Markov description of 
chemical kinetics

Or others...
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A Jump-Markov description of 
chemical kinetics

Or others...
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A Jump-Markov description of 
chemical kinetics

Or others...

77

At each step, we ask two questions:

When is the next jump?
Where will that jump lead?



Reaction Stoichiometry (review)

• The Stoichiometric vector, s, refers to the relative change in the 
population vector after a reaction.

• There may be many different reactions for a given stoichiometry.
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[10, 15] [11, 15]

[11, 14] [12, 14]

[12, 15][9, 15]

[10, 14][9, 14]

S1 → S1 + S1

S2 → S2 + S1

∅ → S1

s1 = [1, 0]T

S1 + S1 → S1

S1 + S2 → S2

S1 → ∅

s2 = [−1, 0]T

S2 → S2 + S2

S1 → S1 + S2

∅ → S2

s3 = [0, 1]T

S2 → S1

S1 + S2 → S1 + S1

S2 + S2 → S1 + S2

s4 = [1,−1]T



Reaction Propensities (review)

• The propensity,    , of a reaction is its rate.
•          is the probability that the      reaction will occur in a 

time step of length    .
• Typically, propensities depend only upon reactant populations. 
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[10, 15] [11, 15]

[11, 14] [12, 14]

[12, 15][9, 15]

[10, 14][9, 14]

w

wµdt µ
th

dt

S1 + S1 → S1

S1 + S2 → S2

S1 → ∅

s2 = [−1, 0]T

k1x2(x1 − 1)/2
k2x1x2

k3x1

w2(x1, x2)



Probability reaction will occur in               :

Probability reaction will not occur in               :             

Probability a reaction will not occur in two such time 
intervals                 :

Suppose that,               , then the probability that no reaction will 
occur in the interval              is

Taking the limit as K goes to infinity yields that the probability that 
no reaction will occur in the interval              is
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[t, t + ∆t) w∆t + O(∆t)2

[t, t + ∆t) 1 − w∆t + O(∆t)2

[t, t + 2∆t)
(

1 − w∆t + O(∆t)2
)2

= 1 − 2w∆t + O(∆t)2

[t, t + τ)
τ = K∆t

(

1 − w
τ

K
+ O(K−2)

)K

[t, t + τ)

lim
k→∞

(

1 − w
τ

K
+ O(K−2)

)K

= exp(−wτ)

Exponential Waiting Times



The probability that a reaction will occur in the interval              
is                               .   This is a cumulative distribution.

The density (derivative) of the random number,    , is:

Such a random number is known as an exponentially distributed 
random number.

Notation:

81

Exponential Random Variables

FT (τ) = 1 − exp(−wτ)

is an exponentially 
distributed r.v. with 

parameter:     . 

T ∈ EXP(λ) → T

λ

[t, t + τ)

fT (τ) =
1

w
exp(−wτ)

T



Exponential Waiting Times

• We have assumed that the system is fully described by the 
population vectors.

• If no reaction occurs, then nothing will have changed.  

• Waiting times must be memoryless random variables.

• No matter where we cut and scale the distribution, it must 
always looks the same.
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The exponential is the only 
continuous r.v. with this property. 



Generating Waiting Times

• To generate an exponentially distributed random number, all we 
need is a uniform random number generator.

• Find the cumulative distribution,

• Generate uniform random number, 

• Find intersection where              :

• This is the time of the next reaction.
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time (s)

C
um

ul
at

iv
e 

D
is

tr
ib
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io

n 1 − exp(−λt)

F (t) = 1 − exp(−λt)

F (t) = r

r ∈ U[0, 1]

τ =
1

λ
log

1

1 − r



Monte-Carlo 
Simulation Methods

The Jump Markov Process

• Stochastic Simulation Algorithm 
•D.T. Gillespie, J. Phys. Chem. A 81, 2340 (1977)
•M. Gibson and J. Bruck, J. Phys. Chem. 104, 1876 (2000)
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Stochastic Simulation 
Algorithm

s2

Step 1.  Generate the time of 
the next reaction.

Step 2.  Decide which reaction 
has occurred.

Step 3. Update current Time 
(t=t+τ) and State (x = x+sk).

t = ti + τt = ti
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Monte-Carlo 
Simulation Methods

• Stochastic Simulation Algorithm 
•D.T. Gillespie, J. Phys. Chem. A 81, 2340 (1977)
•M. Gibson and J. Bruck, J. Phys. Chem. 104, 1876 (2000)

• Possible SSA methods:
• First Reaction Method (Gillespie ‘77)

• Next Reaction Method (Gibson and Bruck ‘00) 

• Direct Method (Gillespie ‘77)
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τµ =
1

wµ(x)
log

1
rµ

The First Reaction Method (FRM)

s2

Step 1.  Generate the time of 
the next reaction of each type.
The time until the next reaction is a random 
variable of exponential distribution:

To generate each next reaction time, generate 
r1 from a uniform distribution on (0,1) and use 
the equation:

Step 2.  Decide which reaction has occurred.
This is simply the reaction with the smallest       :

Step 3. Update current Time (t=t+    ) and State (x = x+sk).

t = ti + τ
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k = arg

{

min
µ∈{0,...,M}

τµ

}

τµ

τk

In the FRM each reaction requires M rv’s.

Pτµ(t) = wµ(x)e−wµ(x)t



The First Reaction Method
 SSA in Matlab.
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clear all
t=0;tstop = 2000;                                  %%specify initial and final times
x = [0; 0];                                        %% Specify initial conditions
S = [1 -1 0  0; 0  0 1 -1];                        %% Specify stoichiometry
w = inline('[10, 1*x(1), 10*x(1), 1*x(2)]','x');   %% Specify Propensity functions
while t<tstop     
	   tpos = 1./w(x).*log(1./rand(4,1));            % possible times until first reaction
    [tpos,i]=min(tpos);                           % find which is first reaction
    t=t+tpos;
    if t<=t_stop
	 	     x = x+S(:,i);                             % update the configuration
	   end
end



The Next Reaction Method (NRM)

• In the FRM, we generate times,        , for all M reactions and 
choose the reaction, k, with the smallest time,     .

• Only a few species will change population as a result of this 
reaction--the rest will remain constant.

• For most reactions, the propensity functions will remain 
constant.

• For these, the times can be reused in the subsequent step 
to find the next reaction:                           .

• When there are many different species and reactions, this 
NRM approach can be done with far fewer random number 
than the FRM.

• Particularly useful for compartmental or Reaction-Diffusion 
processes.

89

τk

{τµ}

{τµ} →{ τµ − τk}



Monte-Carlo 
Simulation Methods

• Stochastic Simulation Algorithm 
•D.T. Gillespie, J. Phys. Chem. A 81, 2340 (1977)
•M. Gibson and J. Bruck, J. Phys. Chem. 104, 1876 (2000)

• Possible SSA methods:
• First Reaction Method (Gillespie ‘77)

• Next Reaction Method (Gibson and Bruck ‘00) 

• Direct Method (Gillespie ‘77)
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Minimum of two 
Exponential Random Variables

Let                      be a set of exponentially distributed 
random variables: 

The minimum of        is an exponentially distributed 
random variable given by:

The argument, k, of this distribution is also a random 
variable with distribution:
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{τ1, τ2, . . . , τM}

{τµ}

In the DM we only generate 2 rv’s.

τµ ∈ EXP (wµ)

P (k = µ) =
wµ

|w|
1

min
µ∈{0,...,M}

τµ ∈ EXP (|w|
1
)



The Direct Method (DM)

s2

Step 1.  Generate the time of 
the next reaction.
The time until the next reaction is a random 
variable of exponential distribution:

To generate the next reaction time, generate 
r1 from a uniform distribution on (0,1) and use 
the equation:

Step 2.  Decide which reaction has occurred.
To obtain a realization of which reaction will occur, generate 
a second uniform random number, r2, and find the smallest 
k such that:

Step 3. Update current Time (t=t+τ) and State (x = x+sk).

t = ti + τ
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τ =
1

|w|
1

log
1

r1

k−1∑

µ=1

wµ(x) ≤ r2 |w|
1
≤

k∑

µ=1

wµ(x)

Pτ (t) = |w(x)|1e−|w(x)|1t



The Direct Method
 SSA in Matlab.
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clear all
t=0;tstop = 2000;                                  %%specify initial and final times
x = [0; 0];                                        %% Specify initial conditions
S = [1 -1 0  0; 0  0 1 -1];                        %% Specify stoichiometry
w = inline('[10, 1*x(1), 10*x(1), 1*x(2)]','x');   %% Specify Propensity functions
while t<tstop     
    w0 = sum(w(x));                               % compute the sum of the prop. functions 
	   t = t+1/w0*log(1/rand);                       % update time of next reaction
    if t<=t_stop
	 	 r2w0=rand*w0;               % generate second random number and multiply by prop. sum         
	 	 i=1;                                          % initialize reaction counter
	 	 while sum(w(1:i))<r2w0             % increment counter until sum(w(1:i)) exceeds r2w0
	 	 	 i=i+1;
	 	 end
	 	 x = x+S(:,i);                                 % update the configuration
	 end
end



Limitations on the SSA
• The SSA is an “exact” simulation of the system.

• But…
– Stepping through every reaction can take a lot of time. 
– A statistical representation of the system dynamics 

may require many realizations (104 to 106).

• Faster approximations are available for some 
problems.
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Monte-Carlo 
Simulation Methods

• Stochastic Simulation Algorithm (SSA).
•  τ-leaping

•D. Gillespie, J. Chem. Phys. 115, 1716 (2001)
•D. Gillespie, L. Petzold, J. Chem. Phys. 119, 8229 (2003)
•M. Rathinam et al., J. Chem. Phys. 119, 12784 (2003)
•T. Tian and K. Burrage, J. Chem. Phys. 121, 10356 (2004)
•Y. Cao, D. Gillespie and L. Petzold, J. Chem. Phys. 123, 054104 
(2005)
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Step 0.  Specify length of each time step, τ.

 Assume that all propensity functions are constant over 
 the time interval (t,t+τ).

 The number of times each reaction will fire is a 
 Poisson* random number with mean wµτ:

Step 1. For each µ, generate kµ.
Step 2. Update the time:

 Update the state:

 
*For some recent studies, binomial RV’s are used (T. Tian and K. Burrage, 2004)

t = t + τ
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τ Leaping

x = x +

M∑

µ=1

kµsµ

Pkµ(n) =
[wµ(x)τ ]n

n!
ewµ(x)τ



τ Leaping

s2

t = ti +τt = ti

The number of times each reaction will fire is a Poisson random 
number with mean wµτ:
Step 1. For each µ, generate kµ.
Step 2. Update the state:
 

Update the time: 
  

Update Time

t = t + τ
97

x = x +

M∑

µ=1

kµsµ

k1 = 4; s1 = [0, 1]T

k3 = 3; s1 = [0,−1]T
k2 = 2; s1 = [−1, 1]T

k4 = 4; s1 = [1,−1]T

Pkµ(n) =
[wµ(x)τ ]n

n!
ewµ(x)τ



Limitations of τ leaping
• For many situations τ leaping significantly speeds 

up the Monte Carlo simulation, but:
– Poisson r.v.’s are unbounded

– Propensity functions may change dramatically over 
small time intervals. 

– May result in negative populations.

Note that these concerns are most important when the 
population of some species are very small.

Precisely the circumstance where stochastic models are most important!
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Chemical Langevin Equation
• Comparison of Poisson and Gaussian random variables.

• For small numbers of reaction steps, tau leaping doesn’t 
give much help.

• For large numbers of reactions, replace the Poisson 
distribution with a normal distribution (same mean and 
variance. These are cheaper to generate.

• This is known as the chemical Langevin equation.
99
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Monte-Carlo 
Simulation Methods

• Stochastic Simulation Algorithm (SSA).
•  τ-leaping

• System Partitioning Methods
• Fast--Slow Partitions

•C. Rao and A. Arkin, J. Chem. Phys. 118, 4999 (2003)
•Y. Cao et al., J. Chem. Phys. 122, 014116 (2005)

• Continuous--Discrete Partitions
•E. Haseltine and J. Rawlings, J. Chem. Phys. 117, 6959 (2002)
•H. Salis and Y. Kaznessis, J. Chem. Phys. 122, 054103 (2005)
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Separate into “fast” and 
“slow” partitions.

Assume that the “fast” 
partitions reach probabilistic 
equilibrium before a slow 
reaction occurs.

Fast--Slow partitions.
PSS
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PSS

Use the fast sets’ steady state probability distributions to 
scale the propensity functions of the slow reactions.

Results in a vector of average propensity functions,     , 
for the slow reactions.

Slow Reaction 
Propensities

Average Slow 
Reaction Propensities

X =

102

Fast--Slow partitions.











wµ(x1)
wµ(x2)
wµ(x3)

...











w̄µ, for µ = {1, 2, . . . , M}

w̄



PSS
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The projection to the slow 
manifold results in a new 
lower dimensional Markov 
chain.

This is simulated with SSA.

Fast--Slow partitions.



• In some systems, there are great differences in scale:

• Large populations (continuous)

• Small populations (discrete)

• All discrete models take too long.

• All continuous models are inaccurate.

• Hybrid models are necessary.
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Continuous--Discrete partitions.



Separate into “continuous” and “discrete” 
partitions.

τ

Simulate the continuous part 
with ordinary or stochastic 
differential equations.

Choose uniform rv, r.

Numerically integrate 
propensity functions until:

Choose next discrete reaction.

co
nt

in
uo

us

discrete

− log r

∫ t0+τ

t0

M∑
µ=1

wµ(x(t))dt = − log r



x

Using the SSA to Find Distributions

• The SSA does an excellent job of producing possible 

trajectories.

x
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After      tosses 
there is still an 
error of about
              .      

Convergence of the SSA
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•To get more accurate distributions, one needs more SSA runs.

•Unfortunately, the convergence rate of any Monte Carlo 
algorithm is fundamentally limited:            

• If very high precision is required, then MC methods will be very 
inefficient.
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Convergence for Coin Toss

# coin flips

error = O(n−

1

2 )

1
√

n
∣

∣

∣

∣

Heads

n
− 0.5

∣

∣

∣

∣

error: 10
7

3 × 10
−4



Density Computations



The Finite State Projection (FSP) solution to the 
Chemical Master Equation.

Reductions to the FSP

Case studies.
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          evolves according to the Linear Time Invariant ODE:
Ṗ(X, t) = A · P(X, t)

The Chemical 
Master Equation

Define the probability density state 

vector (pdv):                                                   .

The CME (McQuarrie ‘67):

The matrix CME

s1

s2The probability that the system is in configuration x at t+dt is 
equal to the probability that the system is at x at t, and no 
reaction occurs between t and t+dt plus the probability that the 
system is one reaction removed from x at t and that reaction 
occurs between t and t+dt.

P(X, t) := [p(x1, t), p(x2, t), p(x3, t), . . .]
T

P(X, t)

ṗ(x, t) = −p(x, t)
M∑

k=1

wk(x) +
M∑

k=1

p(x − sk, t)wk(x − sk)



• The solution of the CME is a transfer operator:

• The dimension of the CME can be INFINITE.

• Most CME’s cannot be solved, so approximations are needed.

CMEP(t0) P(t0 + τ)
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The Chemical 
Master Equation



A =









−w1 0 w4 0

w1 −w2 w5 0

0 0 −w4 − w5 w3

0 w2 0 −w3









Forming the Generator
A has one row/column 
for each state.
Each transition,            , 
contributes to A in two 
locations: 
                 goes in the 
diagonal element 
                 goes in the 
off-diagonal element 
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1 2

3 4

xi → xj

−wµ(xi)

+wµ(xi)

Ai,i

Aj,i

w1

w2

w3

w4
w5



A =









−w1 0 w4 0

w1 −w2 w5 0

0 0 −w4 − w5 w3

0 w2 0 −w3









The Finite State Projection
Select the states to keep.

Find the corresponding 
projection matrix:

Collapse remaining states 
into a single absorbing 
state
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1 2

3 4

w1

w2

w3

w4
w5

A[1,3] =

[

−w1 w4

0 −w4 − w5

]

G

A
FSP
[1,3] =





−w1 w4 0

0 −w4 − w5 0

w1 w5 0





This is the generator for a 
new Markov chain



The Full System The Projected System (FSP)

x4x1 x2 x3

x5 x6 x7 x8

x9 x10 x11 x12

x1 x2 x3

x5 x6 x7

Full Master Equation
[

ṖJ

ṖJ′

]

=

[

AJ AJJ′

AJ′J AJ′

] [

PJ(t)
PJ′(t)

]

Dimension =                  = Infinite         #(J) + #(J ′)

The FSP Theorem 
(Munsky/Khammash JCP ‘06)

∣

∣

∣

∣

∣

∣

∣

∣

[

PJ(t)
PJ′

]

−

[

PFSP
J

(t)
0

]
∣

∣

∣

∣

∣

∣

∣

∣

1

= ε(t)

PJ(t) ≥ P
FSP
J (t) and

Dimension =           = 7         

FSP Master Equation
[

ṖFSP
J

ε̇

]

=

[

AJ 0

−1T AJ 0

] [

PFSP
J

(t)
ε(t)

]

#(J) + 1

−1
T
AJ

ε(t)
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The Finite State 
Projection Method



A Test...
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x1 x2 x3

x5 x6 x7

ε1(t)

ε2(t)

What do          and          mean?ε2(t)ε1(t)



The Finite State Projection Algorithm

Step 1: 
Choose initial projection space, XJ0

.

Inputs: 
Initial Conditions, System Parameters,
Final time (tf ), Allowable error (εmax)

Step 2: 

error, εi(tf ).
Use projection XJi

to find corresponding

Step 3: 
If εi(tf ) ≤ εmax, Stop.

Step 4: 
Expand projection, XJi+1

⊃ XJi
,

Increment i and return to Step 2.

PFSP
Ji

(tf ) approximates P(tf ) to within εmax.
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The FSP Algorithm
…

……

…
Begin with initial conditions, process 
parameters, and error tolerance. 
Choose an initial set:       .

Find εi;
If εi < εmax, STOP.

Otherwise add more 
configurations to get           .

ε0 > εmax

ε1 > εmax

ε2 > εmax

ε3 > εmax

ε4 > εmax

117

XJ0

XJi+1

ε5 < εmax STOP



The “error” sink of the FSP
 to get exit times.
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x4x1 x2 x3

x5 x6 x7 x8

x9 x10 x11 x12

x1 x2 x3

x5 x6 x7

ε(t)

In the original FSP,       is the amount of the probability 
measure that exits the projection region      .

Median exit time:  

In this form       gives information as to when the system 
exits      , but not how.

ε(t)
XJ

ε(t)
XJ

t50 = t, s.t. ε(t) = 0.5



Multiple FSP sinks
 to get exit directions.
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x4x1 x2 x3

x5 x6 x7 x8

x9 x10 x11 x12

x1 x2 x3

x5 x6 x7

ε(t)

By using multiple sinks, one can determine how the 
probability measure exits     . XJ

x4x1 x2 x3

x5 x6 x7 x8

x9 x10 x11 x12

x1 x2 x3

x5 x6 x7

From which state?

ε1(t)

ε3(t)

Which Reaction Leaves      ?XJ

ε3(t)

ε7(t)ε6(t)



Multiple FSP sinks
 to analyze switch decisions
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Using the FSP to determine 
initial switch decisions.



Advantages of the FSP.

• Deterministic.
★ Every run of the FSP yields the same result.
★ Enables easier comparisons of different systems 

(sensitivity analysis).

• Provides accuracy guarantees.
★ Can be made as precise as required.
★ Allows for analysis of rare events.

• Does not depend upon initial conditions.

• Is open to many subsequent model reductions.
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Limitations

• Numerical stiffness may lead to computational 
inefficiency.

• Systems may become very large as distributions cover 
large regions of the configuration space.
★ Compact distributions may drift over time.
★ Dilute distributions may spread over large regions.
★ Dimension grows exponentially with the number of species.

• For these problems, the original FSP may not suffice,

• BUT, with additional model reductions and systematic 
techniques, many of these problems may be alleviated. 

122



Finite State Projection (FSP) 

Reductions to the FSP

★ Aggregating unobservable states
Munsky/Khammash, CDC, 2006

★ Time interval discretization 
★ Slow manifold projection
★ Coarse meshes for the CME

Outline
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• Often one is not interested in the entire probability 
distribution. 

• Instead one may wish only to estimate:

★ a statistical summary of the distribution, e.g.

✦ means, variances, or higher moments

★ probability of certain traits:

✦ switch rate, extinction, specific trajectories, etc…

• In each of these cases, one can define an output y(t):

y(t) = CP(t)

Using Input & Output relations for 
model reduction.

Ṗ(t) = AP(t)
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Begin with a Full Integer Lattice 
Description of the System States.
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Remove Unreachable States and 
Aggregate the Observable States.
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Project the Reachable/Observable 
States onto a Finite Subspace.

We now have a solvable approximation, for which the FSP 
gives bounds on the approximation’s accuracy.
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Finite State Projection (FSP) 

Reductions to the FSP

★ Aggregating unobservable states
★ Time interval discretization 

Munsky and Khammash, J. Comp. Phys., 2007
Burrage et al,  A.A. Markov 150th Anniv. Meeting, 2006 

★ Slow manifold projection
★ Coarse meshes for the CME

Outline

128



Time Interval Discretization 
for the FSP

★ For many systems, the distribution 
may drift over time.

★ At any one time, the distribution 
may have a limited support, but...

★ The FSP solution must include all 
intermediate configurations.

★ This may lead to an exorbitantly 
large system of ODEs.

τ

2τ

3τ

4τ

5τ

0
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Time Interval Discretization 
for the FSP

τ

2τ

3τ

4τ

5τ

0

[0, τ ]
★ Instead:

✴ Discretize the time interval into 
smaller steps and solve a 
separate projection for each 
interval.
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τ

2τ

3τ

4τ

5τ

0

[τ, 2τ ]
★ Instead:

✴ Discretize the time interval into 
smaller steps and solve a 
separate projection for each 
interval.
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Time Interval Discretization 
for the FSP



τ

2τ

3τ

4τ

5τ

0

[2τ, 3τ ]

132

Time Interval Discretization 
for the FSP

★ Instead:

✴ Discretize the time interval into 
smaller steps and solve a 
separate projection for each 
interval.



τ

2τ

3τ

4τ

5τ

0

[3τ, 4τ ]

133

Time Interval Discretization 
for the FSP

★ Instead:

✴ Discretize the time interval into 
smaller steps and solve a 
separate projection for each 
interval.



τ

2τ

3τ

4τ

5τ

0

[4τ, 5τ ]
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Time Interval Discretization 
for the FSP

★ Instead:

✴ Discretize the time interval into 
smaller steps and solve a 
separate projection for each 
interval.



★ Solving a few smaller systems can 
be much easier than solving a 
single large system.

★ Control the error at each step to 
obtain a guaranteed final error.

★ Caching and reusing information 
from one step to the next may 
further reduce effort.

τ

2τ

3τ

4τ

5τ

0

[4τ, 5τ ]
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Time Interval Discretization 
for the FSP



Finite State Projection (FSP) 

Reductions to the FSP

★ Aggregating unobservable states
★ Time interval discretization
★ Slow manifold projection

Peles/Munsky/Khammash, JCP, 2006
★ Coarse meshes for the CME.

Outline
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Perturbation Theory 
and the FSP

• Some reactions occur faster and more frequently than 
others.

• This can result in a separation of time-scales in the CME.

Disadvantages: Often results in numerical stiffness and 
increased computational complexity.

Advantage: May be able to apply perturbation theory 
to reduce computational effort.
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Intuition (Slow Manifold Projection) 

1. Begin with a finite state 
(projected) Markov process.

2. Group states connected by 
frequent reactions.

x4x1 x2 x3

x5 x6 x7 x8

x9 x10 x11 x12

Red Arrows = Fast (Frequent) Reactions

Black Arrows = Slow (Rare) Reactions

Orange Arrows = (Rare) Transitions to Sink

XJ′
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1. Begin with a finite state 
(projected) Markov process.

2. Group states connected by 
frequent reactions.

3. Find invariant distribution 
for each group.

x4x1 x2 x3

x5 x6 x7 x8

x9 x10 x11 x12

Red Arrows = Fast (Frequent) Reactions

Black Arrows = Slow (Rare) Reactions

Orange Arrows = (Rare) Transitions to Sink

XJ′
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Intuition (Slow Manifold Projection) 



1. Begin with a finite state 
(projected) Markov process.

2. Group states connected by 
frequent reactions.

3. Find invariant distribution 
for each group.

4. Average to find the rates of 
the slow reactions.

Dotted Black = Averaged Slow Reactions

Dashed Orange = Averaged Transitions to Sink

XJ′

Reduced Markov Process
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Intuition (Slow Manifold Projection) 



1. Begin with a finite state 
(projected) Markov process.

2. Group states connected by 
frequent reactions.

3. Find invariant distribution 
for each group.

4. Average to find the rates of 
the slow reactions.

Dotted Black = Averaged Slow Reactions

Dashed Orange = Averaged Transitions to Sink

XJ′

5. Solve for the solution on the slow-manifold.
6. Lift solution to original coordinate system.

Reduced Markov Process

141

Intuition (Slow Manifold Projection) 



Finite State Projection (FSP) 

Reductions to the FSP

★ Aggregating unobservable states
★ Time interval discretization
★ Slow manifold projection
★ Coarse meshes for the CME

Munsky/Khammash, IEEE Trans. on Auto. Conrol, 2008

Outline
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Coarse mesh approximation 
of the CME

• Precision requirements may change for different 
regions of the configurations space.

★ Small populations require great precision.

★ High populations require far less precision.

• By choosing a good coarse approximation of the 
CME, we can take advantage of this.
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1 2 3 4 5 6 7 8 9 10 11 12

Start with the full 1-dimensional Markov lattice.

Ṗ = A · P(t) Original CME

1 2 3 5 8 12

Choose a subset of mesh points.

and specify an approximate relation for the 
probability of the removed points: P ≈ Φq(t)

Solve the reduced system ODE: q̇ = Φ−LAΦq(t)

P(t) ≈ Φ exp(Φ−L
AΦt)Φ−L

P(0)

and lift back to the original system coordinates:
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Coarse mesh approximation 
of the CME



Coarse Mesh:  
Multiple-species problems.

1. Begin with original lattice.
2. Choose interpolation points.
3. Form interpolation (shape) 

function:
4. Project system to find 

reduced system of ODEs:

5. Solve reduced system.
6. Lift back to original 

coordinates.

P(t) ≈ Φq(t)

q̇(t) = Φ−LAΦq(t)
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Finite State Projection (FSP) 

Reductions to the FSP

Case Studies

★ Lambda Phage.

★ Heat Shock.

Outline
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A toy model of phage lambda

OR3 OR2 OR1

cro

cI

PRM PR

• We consider only the core of the lambda switch.

• Two proteins,     and      .

• These activate and repress the       and         promoters 
according to the model of Shea and Ackers, 1985.

cI cro
PR PRM
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The Phage Lambda 
Lysis-Lysogeny Decision

Arkin, Ross, McAdams, 1998.
Full Model

Lytic 
fate

★ Cro reaches a high level before CI is 
produced in much quantity.

★ Cro represses transcription of CI.

Lysogenic 
fate

★ CI increases a little earlier.
★ CI represses transcription of Cro.
★ CI is free to increase even further.
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Relevance of Current Model

Computations done using Gillespie’s SSA.
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Arkin, Ross, McAdams, 1998.
Full Model

Current simplified model

cro

cro

cI

cI

0  5  10 15 20 25 30 35

Lytic 
subpopulation

Lysogenic 
subpopulation

Our simplified model captures the important 
qualitative trends of the cro/cI switch.
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Applying the FSP to 
the Phage Lambda Switch

cro

cI

Unlikely
States
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Applying the FSP to 
the Phage Lambda Switch

cro

cI

ε(t)
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0   20   40   60

0.01

0.005

0

Probability 

Population of cro

60  40   20   0
Population of cI 0   20   40   60

0.01

0.005

0

Probability 

Population of cro

60  40   20   0
Population of cI

Efficiency and Accuracy of FSP Results

Method # Simulations Time (s) ||Error||
1

FSP – a 163 ≤ 5.3 × 10−3

SSA 104 484 ≈ 0.25

SSA 25 × 106
> 12 days ≈ 5 × 10−3

aThe FSP algorithm is run only once.

Guaranteed
No 

Guarantees

FSP SSA
10,000 runs
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Additional information 
available with the FSP solution

• In many cases the FSP is faster and more accurate the 
Monte Carlo methods.

• Higher precision allows greater flexibility.
★ Direct Computation of Switch Rates.
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Lysogenic 
Population

cro

cI

Using the FSP to 
Compute Switch Rates

cI > cro > 20
ε(t)
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cro

cI

Using the FSP to 
Compute Switch Rates

ε(t)
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Using the FSP to 
Compute Switch Rates

0.01

0.005

0

Probability D
ensity

Population of cro

60  40   20   0
Population of cI 0    20    40    60

Method Time (s) Relative Error Guarantee?

FSP 25.5 s < 0.08 % yes
104 SSA runs 440.0 s ≈ 0.90 % no
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Additional information 
available with the FSP solution

• In many cases the FSP is faster and more accurate the 
Monte Carlo methods. 

• Higher precision allows greater flexibility.
★ Direct Computation of Switch Rates.
★ Simultaneous consideration of many different initial 

conditions.
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• The FSP is an approximate map of distributions from one time 
to another.

• This map is valid for any initial distribution.
★ Once computed, this map is cheap to apply again and again.
★ The map automatically provides error bounds for any initial 

condition!

Comparing different initial conditions.

P(t0) FSP P̃(t0 + τ)
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Comparing different initial conditions.
(Increase in       )

cI0 = 0

cro0 = 0 cro0 = 5

cI0 = 0

Increasing the initial amount of        yields a 
slight decrease in the lysogeny rate.

cro

0   20   40   60

0.01

0.005

0

Probability 

Population of cro

60  40   20   0
Population of cI0   20   40   60

0.01

0.005

0

Probability 

Population of cro

60  40   20   0
Population of cI

cro

159



cI0 = 5

cro0 = 0cro0 = 0

cI0 = 0

Increasing the initial amount of     yields a 
significant increase in lysogeny rate.

cI

0   20   40   60

0.01

0.005

0

Probability 

Population of cro

60  40   20   0
Population of cI 0   20   40   60

0.01

0.005

0

Probability 

Population of cro

60  40   20   0
Population of cI

Comparing different initial conditions.
(Increase in     )cI
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Simultaneous comparison of an 
array of initial condition.)

100

50

0

Percent in 
Lysogeny State

15     10      5       0

INITIAL 
Population of cI

0        5
        1

0        1
555% 54%

52%
78%

99%

INITIAL

Population of cro

Method Time (s) # I.C.’s ||Error||
1

Guarantee?

FSP 66.9 s 2000 < 1 × 10−4 yes

104 SSA runs 440.0 s 1 ≈ 0.09 no

1013 SSA runs ≈ 14,000 years! 2000 ≈ 1 × 10−4 no
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Additional information 
available with the FSP solution

• In many cases the FSP is both faster and more accurate 
than other available methods.

• Higher precision allows greater flexibility.
★ Direct Computation of Switch Rates.
★ Simultaneous consideration of many different initial 

conditions.
★ Sensitivity to parameter changes.
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Parametric Sensitivity of 
Probability Distributions.

SEN
SIT

IV
IT

Y
 of 

Probability D
ensity

Population of cro

60  40   20   0
Population of cI

0    20    40    60

0.005

0

-0.005

★ Sensitivity analysis requires a huge degree of accuracy.
★ Monte Carlo methods would require hundreds of millions of runs!!

Sensitivity to a small increase in cell Volume.

FSP

SEN
SIT

IV
IT

Y
 of 

Probability D
ensity

Population of cro

60  40   20   0
Population of cI

0    20    40    60

3

0

-3

SSA
10,000 runs
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Finite State Projection (FSP) 

Reductions to the FSP

Case Studies

★ Lambda Phage.

★ Heat Shock.

Outline

164



S1

k1

−→

←−

k2

S2

Toy Heat Shock Model in E. coli

σ32
σ32    RNAP

σ32

    RNAP

s1
s2

s3

3 forms for      : σ32
σ32 σ32-RNAPσ32-DnaK

S2

k3

−→ S3

Fast

Slow

El Samad et al, PNAS, vol. 102, No. 8, 2005 
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Toy Heat Shock Model 
in E. coli (cont.)

Five Different FSP Solution 
Schemes:

1. Full FSP

Population of free σ32
Po

pu
la

tio
n 

of
 σ

3
2
-R

N
A

P

4459 ODEs
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Five Different FSP Solution 
Schemes:

1. Full FSP
2. Slow manifold (FSP-SM)

Population of free σ32
Po

pu
la

tio
n 

of
 σ

3
2
-R

N
A

P

343 ODEs

Po
pu

la
tio

n 
of

 σ
3
2
-R

N
A

P
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Toy Heat Shock Model 
in E. coli (cont.)



Five Different FSP Solution 
Schemes:

1. Full FSP
2. Slow manifold (FSP-SM)
3. Interpolated (FSP-I)

Population of free σ32
Po

pu
la

tio
n 

of
 σ

3
2
-R

N
A

P

539 ODEs
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Toy Heat Shock Model 
in E. coli (cont.)



Five Different FSP Solution 
Schemes:

1. Full FSP
2. Slow manifold (FSP-SM)
3. Interpolated (FSP-I)
4. Hybrid (FSP-SM/I)

Population of free σ32
Po

pu
la

tio
n 

of
 σ

3
2
-R

N
A

P

Po
pu

la
tio

n 
of

 σ
3
2
-R

N
A

P

49 ODEs
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Toy Heat Shock Model 
in E. coli (cont.)



Five Different FSP Solution 
Schemes:

1. Full FSP
2. Slow manifold (FSP-SM)
3. Interpolated (FSP-I)
4. Hybrid (FSP-SM/I)
5. Multiple time interval 

(FSP-MTI)
0 100 200 300
Population of σ32-RNAP

Pr
ob

ab
ili

ty
 %

0

70 sets of 195 or fewer ODEs.
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Toy Heat Shock Model 
in E. coli (cont.)



0 50 100 150 200 250 300 350
0
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0.01

0.015

0.02

0.025

0.03

0.035

 

 

Full FSP

FSP!MTS

FSP!SM

FSP!I

FSP!SM/I

10
3
 SSA!SM

Efficiency and accuracy of 
the reduced FSP methods
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The Reduced FSP approaches are much faster and more 
accurate than alternative approaches!

For final time tf = 300s

Method Matrix Size Jsolve Jtotal ∞-norm Error
FSP 4459 750s 750s < 3.0 × 10−5

FSP-MTS 1951 - 40.2s < 1.68 × 10−4

FSP-SM 343 0.25s 0.94s ≈ 5.1 × 10−4

FSP-I 539 5.1s 6.1s ≈ 7.7 × 10−4

FSP-SM/I 49 0.04s 0.78s ≈ 8.2 × 10−4

104 SSA Results would take more than 55 hours.
103 SSA-SM - - 84.1s ≈ 0.0116
104 SSA-SM - - 925s ≈ 3.4 × 10−3

105 SSA-SM - - 9360s ≈ 1.6 × 10−3
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Efficiency and accuracy of 
the reduced FSP methods



Conclusions

• Stochastic fluctuations or “noise” is present in the cell 

• Random nature of reactions 

• Quantization of reactants

• Low copy numbers

• Fluctuations may be very important

• Cell variability

• Cell fate decisions

• Some tools are available

• Monte Carlo simulations (SSA and variants)

• Moment approximation methods

• Linear noise approximation (Van Kampen)

• Finite State Projection 

• Many more are needed!



Conclusions

The Finite State Projection: a new tool for stochastic analysis of gene networks

Advantages:

• Accuracy: solutions with a guaranteed error bounds
Particularly suitable for studying rare events

• Speed: solutions can be much faster than Monte Carlo methods
especially when the system has large number of reactions/reaction firings

• Insight: Provides valuable information at little additional cost:
Sensitivity/robustness to parameter changes 
Effect of changes in initial probabilities

Limitations

• Scalability: Not feasible when there are many species with broad 
distributions (over the time of interest [0, t])


